Advances in Taxonomy, Ecology, and Biogeography of Dirivultidae (Copepoda) Associated with Chemosynthetic Environments in the Deep Sea
نویسندگان
چکیده
BACKGROUND Copepoda is one of the most prominent higher taxa with almost 80 described species at deep-sea hydrothermal vents. The unique copepod family Dirivultidae with currently 50 described species is the most species rich invertebrate family at hydrothermal vents. METHODOLOGY/PRINCIPAL FINDINGS We reviewed the literature of Dirivultidae and provide a complete key to species, and map geographical and habitat specific distribution. In addition we discuss the ecology and origin of this family. CONCLUSIONS/SIGNIFICANCE Dirivultidae are only present at deep-sea hydrothermal vents and along the axial summit trough of midocean ridges, with the exception of Dirivultus dentaneus found associated with Lamellibrachia species at 1125 m depth off southern California. To our current knowledge Dirivultidae are unknown from shallow-water vents, seeps, whale falls, and wood falls. They are a prominent part of all communities at vents and in certain habitat types (like sulfide chimneys colonized by pompei worms) they are the most abundant animals. They are free-living on hard substrate, mostly found in aggregations of various foundation species (e.g. alvinellids, vestimentiferans, and bivalves). Most dirivultid species colonize more than one habitat type. Dirivultids have a world-wide distribution, but most genera and species are endemic to a single biogeographic region. Their origin is unclear yet, but immigration from other deep-sea chemosynthetic habitats (stepping stone hypothesis) or from the deep-sea sediments seems unlikely, since Dirivultidae are unknown from these environments. Dirivultidae is the most species rich family and thus can be considered the most successful taxon at deep-sea vents.
منابع مشابه
A new species of deep-sea Tegastidae (Crustacea: Copepoda: Harpacticoida) from 9°50'N on the East Pacific Rise, with remarks on its ecology.
Both male and female of the new deep-sea species Smacigastes barti sp. nov. (Tegastidae, Sars) are described in detail. Copepoda is one of the most diversified taxa at deep-sea hydrothermal vents, but only one species of the family Tegastidae has been described from this habitat and other deep-sea environments. Smacigastes barti is the second species of the genus SmacigastesIvanenko & Defaye, 2...
متن کاملEcology and Biogeography of Free-Living Nematodes Associated with Chemosynthetic Environments in the Deep Sea: A Review
BACKGROUND Here, insight is provided into the present knowledge on free-living nematodes associated with chemosynthetic environments in the deep sea. It was investigated if the same trends of high standing stock, low diversity, and the dominance of a specialized fauna, as observed for macro-invertebrates, are also present in the nematodes in both vents and seeps. METHODOLOGY This review is ba...
متن کاملPhylogenetic Relationships among Deep-Sea and Chemosynthetic Sea Anemones: Actinoscyphiidae and Actinostolidae (Actiniaria: Mesomyaria)
Sea anemones (Cnidaria, Actiniaria) are present in all marine ecosystems, including chemosynthetic environments. The high level of endemicity of sea anemones in chemosynthetic environments and the taxonomic confusion in many of the groups to which these animals belong makes their systematic relationships obscure. We use five molecular markers to explore the phylogenetic relationships of the sup...
متن کاملThe dynamics of biogeographic ranges in the deep sea.
Anthropogenic disturbances such as fishing, mining, oil drilling, bioprospecting, warming, and acidification in the deep sea are increasing, yet generalities about deep-sea biogeography remain elusive. Owing to the lack of perceived environmental variability and geographical barriers, ranges of deep-sea species were traditionally assumed to be exceedingly large. In contrast, seamount and chemos...
متن کاملEcology and Fisheries: Dark Carbon on Your Dinner Plate
Chemosynthetic primary production by symbiotic microbes powers entire ecosystems in the remote deep sea. New research shows that in shallow waters chemosynthetic symbioses can contribute substantially to a vital economic resource - lobster fisheries in the Caribbean Sea.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2010